skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Enquist, Brian_J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Droughts are a natural hazard of growing concern as they are projected to increase in frequency and severity for many regions of the world. The identification of droughts and their future characteristics is essential to building an understanding of the geography and magnitude of potential drought change trajectories, which in turn is critical information to manage drought resilience across multiple sectors and disciplines. Adding to this effort, we developed a dataset of global historical and projected future drought indices over the 1980–2100 period based on downscaled CMIP6 models across multiple shared socioeconomic pathways (SSP). The dataset is composed of two indices: the Standardized Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI) for 23 downscaled global climate models (GCMs) (0.25-degree resolution), including historical (1980–2014) and future projections (2015–2100) under four climate scenarios: SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5. The drought indices were calculated for 3-, 6- and 12-month accumulation timescales and are available as gridded spatial datasets in a regular latitude-longitude format at monthly time resolution. 
    more » « less
  2. Abstract Biologists increasingly rely on computer code to collect and analyze their data, reinforcing the importance of published code for transparency, reproducibility, training, and a basis for further work. Here, we conduct a literature review estimating temporal trends in code sharing in ecology and evolution publications since 2010, and test for an influence of code sharing on citation rate. We find that code is rarely published (only 6% of papers), with little improvement over time. We also found there may be incentives to publish code: Publications that share code have tended to be low‐impact initially, but accumulate citations faster, compensating for this deficit. Studies that additionally meet other Open Science criteria, open‐access publication, or data sharing, have still higher citation rates, with publications meeting all three criteria (code sharing, data sharing, and open access publication) tending to have the most citations and highest rate of citation accumulation. 
    more » « less
  3. Abstract Growing evidence suggests that liana competition with trees is threatening the global carbon sink by slowing the recovery of forests following disturbance. A recent theory based on local and regional evidence further proposes that the competitive success of lianas over trees is driven by interactions between forest disturbance and climate. We present the first global assessment of liana–tree relative performance in response to forest disturbance and climate drivers. Using an unprecedented dataset, we analysed 651 vegetation samples representing 26,538 lianas and 82,802 trees from 556 unique locations worldwide, derived from 83 publications. Results show that lianas perform better relative to trees (increasing liana‐to‐tree ratio) when forests are disturbed, under warmer temperatures and lower precipitation and towards the tropical lowlands. We also found that lianas can be a critical factor hindering forest recovery in disturbed forests experiencing liana‐favourable climates, as chronosequence data show that high competitive success of lianas over trees can persist for decades following disturbances, especially when the annual mean temperature exceeds 27.8°C, precipitation is less than 1614 mm and climatic water deficit is more than 829 mm. These findings reveal that degraded tropical forests with environmental conditions favouring lianas are disproportionately more vulnerable to liana dominance and thus can potentially stall succession, with important implications for the global carbon sink, and hence should be the highest priority to consider for restoration management. 
    more » « less